

International Journal of Zoology Studies www.zoologyjournals.com ISSN: 2455-7269 Received: 01-12-2023, Accepted: 16-12-2023, Published: 01-01-2024 Volume 9, Issue 1, 2024, Page No. 1-4

Inventorizations of Fauna of District Faridkot, Punjab, India with particular references to Class Insecta (Phylum Arthropoda)

Amandeep Singh¹, Jashandeep Singh¹, Rai Singh Dhillon^{1*}, Varinder Makkar²

¹ Biology Lab, Sangat Sahib Bhai Pheru Khalsa Senior Secondary School, Faridkot, Punjab, India ² Department of Zoology, Govt. Brijindra College Faridkot, Punjab, India

Abstract

A total of 44 insect species belonging to 13 orders, 29 families and 43 genera were documented from different localities of district Faridkot, Punjab, India during the year 2023. Insects were recoded from houses, agricultural fields, gardens *etc*. Majority of insects were documented from agricultural fields and garden because insects act as pollinators for many crops. Social insects such as termite was documented from old woody materials whereas honey bees were recoded from many apicultures farms. Present study will be useful for researchers, scientists, entomologists, zoologists for additional information about the faunal diversity of the region.

Keywords: Insect, pest, pollination, bee, Faridkot, Fauna, biodiversity, arthropoda

Introduction

Insects represents the two third flora of India with 59353 species under 619 orders (Alfred *et al.*, 1998^[2]; Joshi *et al.*, 2016)^[4]. According to Prakhar *et al* (2021)^[11] insects are the largest, most dominant and diverse group of animals found on earth.

Pollination is an important process for development of fruits. It is a type of cross pollination which is helpful for transformation of pollen grains in unisexual flowers. According to Moreno and Blasquez (2021) insects plays vital role in pollination as well as in biological control.

In many countries insects are used as a food. They act as active ingredients in different dishes. Insects are rich in proteins, amino acids and minerals such as calcium, iron, zinc, vitamin A, C, and D (Pino Moreno and Ganguli, 2016 ^[10]; Ramos-Elorduy and Pino Moreno, 1989 ^[15]; Ramos-Elorduy and Pino Moreno, 1990 ^[12]; Ramos-Elorduy and Pino Moreno, 2001 ^[13]; Ramos-Elorduy *et al.*, 1997 ^[14]).

According to Karthika *et al.* (2016) ^[5] taxonomic study and accurate identification of the organisms are important for biological research. Keeping this in view present study was conducted for documentation of fauna of district Faridkot especially for diversity of insects.

Material and Methods

Study area

Punjab state is agricultural state and present in northern part of India. Geographically, it is divided into three regions (Majha, Doaba and Malwa). Present study was conducted in selected sites such as village sangatpura, Mrar, Pipli, Araian wala, Machaki Mal Singh, Faridkot city, Sangat Sahib Bhai Pheru Khalsa Senior Secondary School campus of district Faridkot (Malwa) during the year 2023.

Documentation

Regular field visits were conducted in different crops, gardens and buildings for documentation of insects. Photographs were clicked using mobile camera.

Taxonomic identification

Documented insects were identified on the basis of available literature (Pathak and Khan, 1994^[9]; Musgrave, 2013^[7]; Van Driesche *et al.*, 2013^[19]; Siregar *et al.*, 2017^[18]; Bhat and Ahangar, 2018^[3]; Ahmed *et al.*, 2020^[1]; Oo *et al.*, 2020^[8]; Prakhar *et al.*, 2021^[11]; Yadav *et al.*, 2022^[20] and Sharma *et al.*, 2023)^[17].

Results and Discussion

During present study 44 species of insects belonging to 13 orders, 29 families and 43 genera were recorded from the study area. Out of 13 orders, Coleoptera was dominant with 5 families and 7 species followed by Hymenoptera with 4 families and 7 species, Lepioptera (6 families and 6 species), Diptera (3 families and 4 species), Araneae (4 families and 4 species) and Odonata (2 families and 2 species) (Table.1.) (Fig.1.). Orders Blattodea, Isoptera, Ixodida, Mantodea and Psocodea represented with one species each.

Shakeel *et al.* (2019) ^[16] studied the insect pollinator diversity in the crop fields of *Eruca sativa* Mill. (Arugular) and *Brassica rapa* L. They recorded, total 20 insects which were visited on the flower for pollination in which order Hymenoptera was dominant than Diptera, Lepidoptera and Coleoptera. They suggested *Apis mellifera* was most prominent than *A. cerana*, *A. florea* and *A. dorsata*. They also suggested, pollinators were more in afternoon than morning.

Ahmed *et al.* (2020) ^[1] recorded 219 species of insects belonging to 103 genera and 20 families (6 superfamilies) from Haryana. They suggested this study will be useful for conservation of insects in the Haryana region. After that, Moreno and Blasquez (2021) ^[6] documented 69 species of edible insects from the state of Michoacan, Mexico. They suggested documented insect are used by people in various dishes. This study provides information about nutritional values of the insects.

S. No.	Phylum	Class	Order	Family	Zoological Name	Common Name
1.				Araneidae	Argiope aurantia Lucas, 1833	Yellow garden spider
2.				Oxyopidae	Peucetia viridans Hentz, 1832	Green lynx spider
3.			Araneae	Salticidae	Hyllus semicupreus Simon 1885	Hyllus spider
4.					Plexippus paykulli Audouin, 1826	Wall spider
5.			Blattodea	Blattidae	Periplaneta americana Linnaeus, 1758	Cockroach
6.				Chrysomelidae	Aulacophora foveicellis Lucus 1849	Pumpkin beetle
7.					Coccinella septempunchata Linnaeus, 1758	Lady bird beetle
8.				Coccinellidae	Coleomegilla maculate De Geer 1775	Spotted Lady Bird Beetle
9.					Henosepilachna vigintioctopunctata Fabricius 1775	Hadda Beetle
10.			Coleoptera	Lampyridae	Lampyris noctiluca Linnaeus, 1758	Fire fly
11.				Scarabaeidae	Heteronychus arator Fabricius, 1775	Dung beetle
12.				Tenebrionidae	Tribolium castaneum Herbst, 1797	Red flour beetle
13.			Diptera	Culicidae	Aedes aegypti Linnaeus in Hasselquist, 1762	Mosquito
14.					Anopheles sp	Malarial mosquito
15.				Drosophilidae	Drosophila melanogaster Meigen, 1830	Fruit Fly
16.				Muscidae	Musca domestica Linnaeus, 1758	House fly
17.	Arthropoda	Insecta		Cimicidae	Cimex lectularius Linnaeus, 1758	Bed bug
18.			Hemiptera	Pentatomidae	Oebalus pugnax Fabricius, 1775	Rice stinck bug
19.				Pseudococcidae	Phenacoccus solenopsis Tinsley 1898	Mealy Bug
20.				Pyrrhocoridae	Dysdercus cingulatus Fabricius 1775	Cotton Bug
21.			Hymenoptera	Apidae	Heterotriga itama Cockerell 1918	Stingless bee
22.					Bombus occidentalis Greene 1858	Bumble Bee
23.					Apis cerana Fabricius 1793	Red dwarf Honey bee
24.				Crabronidae	Larra bicolor Fabricius, 1775	Mole Cricket hunter
25.				Formicidae	Formica rufa Linnaeus, 1716	Common Ant
26.					Formica fusca Linnaeus, 1758	Common black Ant
27.				Vespidae	Polistes versicolor Olivier 1791	Common yellow wasp
28.			Isoptera	Mastotermitidae	Mastotermes darwiniensis Froggatt, 1897	Termite
29.			Ixodida	Ixodidae	Rhipicephalus microplus Canestrini, 1888	Cattle Tick
30.			Lepidoptera	Hesperiidae	Pelopidas mathias Fabricius 1798	Small branded Swift
31.				Papilionidae	Papilio demoleus Linnaeus, 1758	Lime butterfly
32.				Noctuidae	Maliattha lacteata Warren 1913	Moth
33.				Erebidae	Orvasca subnotata Walker, 1865	
34.				Nymphalidae	Danaus genutia Cramer, 1779	Common tiger
35.				Pieridae	Eurema hecabe Linnaeus, 1758	Common grass yellow
36.			Mantodea	Mantidae	Mantis religiosa Linnaeus, 1758	Praying mantis
37.			Odonata	Aeshnidae	Anax indicus Lieftinck 1942	Dragon fly
38.				Coenagrionidae		Damsle Fly
39.			Orthoptera	Acrididae	Omocestus viridulus Linnaeus, 1758	Grasshopper
40.					Schistocerca gregaria Forsskal, 1775	Locust
41.					Oxya sp	Rice grasshopper
42.				Gryllidae	Acheta domesticus Linnaeus, 1758	House cricket
43.				Gryllotalpidae	Gryllotalpa gryllotalpa Linnaeus, 1758	Mole Criket
44.			Psocodea	Pediculidae	Pediculus humanus Linnaeus, 1758	Louse

 Table 1: List of documented insect species with taxonomic position.

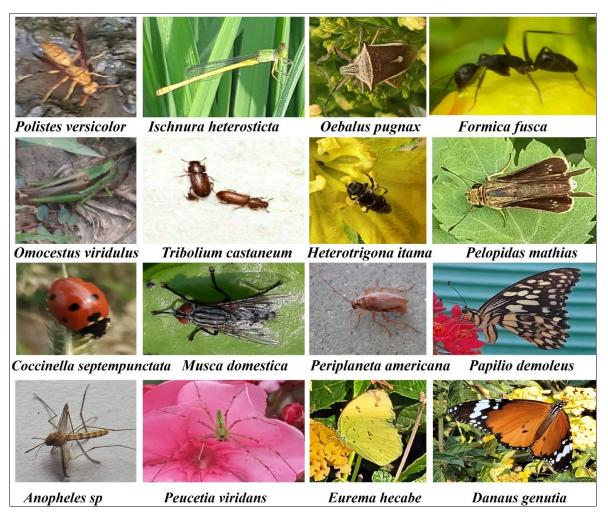


Fig 1: Morphology of documented insects (photography by AS, JS, RSD and VM).

Conclusion

Documentation of faunal diversity provides information about the occurrence of different types of species of any area. This information will be useful for development of conservation strategies for rare species.

Author detail

AS and JS are senior secondary medical student and RSD working as Biology Lecturer in Sangat Sahib Bhai Pheru Khalsa Senior Secondary School Faridkot, Punjab. VM is working as Assistant Professor in the department of Zoology, Govt. Brijindra College Faridkot, Punjab, India.

Authors contribution

AS, JS and RSD collected information and prepared manuscript. VM and RSD identified the insects and suggested some corrections. Present manuscript is finalized by all authors.

Acknowledgments

Authors are thankful to Smt. Bhupinder Kaur Sran (Principal) and Sr. Swaranjit Singh Gill (Chairman) of Sangat Sahib Bhai Pheru Khalsa Senior Secondary School Faridkot, Punjab for providing necessary facilities.

References

- 1. Ahmed I, Saini J, Singh LRK, Gupta D, Chandra K, *et al.* Insecta: Hymenoptera. Zoological Survey of India Fauna of Haryana State Fauna, Series,2020:24:189-220.
- 2. Alfred JRB, Das AK, Sanyal AK. Faunal diversity in India. Zoological Survey of India, 1998, 479.
- Bhat DM, Ahangar FA. A systematic checklist and species richness of insect pests associated with vegetable crops in Jammu and Kashmir State (India). J Entomol Zool Stud, 2018:6(2):328-338.
- Joshi NC, Joshi PC, Kumar S, Nath P, Singh VK, Mansotra D, *et al.* Entomofaunal diversity in fruit orchards along the altitudinal gradients of district Nainital, Uttarakhand. Int J Fauna Biol Stud,2016:3(2):113-120.
- 5. Karthika P, Krishnaveni N, Vadivalagan C, Murugan K, Nicoletti M, Benelli G. DNA barcoding and evolutionary lineage of 15 insect pests of horticultural crops in South India. Karbala Int J Mod Sci,2016:2:156-168.
- 6. Moreno JMP, Blasquez JRE. Taxonomic analysis of some edible insects from the State of Michoacan, Mexico. Front Vet Sci,2021:8:629194.

- Musgrave EA. An ecological assessment of insect diversity at organic central coast vegetable farms on two spatial scales [M.Sc. Thesis]. San Jose State University, 2013, 84.
- 8. Oo SS, Hmwe KM, Aung NN, Su AA, Soe KK, Mon TL, *et al.* Diversity of insect pest and predator species in Monsoon and summer rice fields of Taungoo Environs, Myanmar. Adv Entomol,2020:8:117-129.
- 9. Pathak MD, Khan ZR, *et al.* Insect pests of rice. International Rice Research Institute Manila, Philippines and International Centre of Insect Physiology and Ecology, 1994, 89.
- 10. Pino Moreno JM, Ganguli A. Determination of fatty acids in some edible insects in Mexico. J Insects Food Feed,2016:2:37-42.
- Prakhar P, Singh M, Agarwal RK. A study of insects diversity in different habitats found in nearby locality of Raipur, Chhattisgarh. Int J Sci Res Sci Technol,2021:8(5):467-468.
- Ramos-Elorduy J, Pino Moreno JM. Contenido caloric de algunos insectos comestibles de Mexico. Rev Soc Quim Mex,1990:34:56-58.
- Ramos-Elorduy J, Pino Moreno JM. Contenido de vitaminas en algunos insectos comestibles de Mexico. Rev Soc Quim Mex,2001:45:66-76.
- Ramos-Elorduy J, Pino Moreno JM, Escamilla Prado E, Alvarado Perez M, Lagunes Otero J, Ladron de Guevara O, *et al.* Nutritional value of edible insects from the state of Oaxaca, Mexico. J Food Compos Anal,1997:10:142-157.
- 15. Ramos-Elorduy J, Pino Moreno JM. Los Insectos Comestibles en el Mexico Antiguo (Estudio Etnoentomologico). Mexico AGT, 1989, 108.
- Shakeel M, Ali H, Ahmad S, Said F, Khan KA, Bashir MA, *et al.* Insect pollinators diversity and abundance in Eruca sativa Mill (Arugula) and Brassica ropa L. (Field Mustard) crops. Saudi J Biol Sci,2019:26:1704-1704.
- Sharma V, Singh R, Sharma R, *et al.* Flora and fauna of Beers of District Faridkot, Punjab, India. J Med Plants Stud,2023:11(2):21-30.
- 18. Siregar AZ, Tulus, Lubis KS, *et al.* Diversity and pest insects in paddy field cultivation: A case study in Lae Parira, Dairi. Int J Trend Res Dev,2017:4(5):58-62.
- Van Driesche GR, LaForest JH, Bargeron CT, Reardon RC, Megan H. Forest pest insects in North America: A photographic guide. Forestpests.org/book/,2013. 695.
- 20. Yadav RB, Khaire PD, Maske SV. Diversity and distribution of agricultural insect pests in some selected areas of Indapur (Pune) and Phaltan (Satara) Tehsil, Maharashtra, India. Int J Adv Res Sci Commun Technol. 2022:2(2):114-121.